

Journal of Fluorine Chemistry 73 (1995) 69-71

Ferroelectric BaTiO₃ ceramics sintered at low temperature with the aid of a mixture of CaF₂ and LiF

L. Benziada a,*, J. Ravez b

* Institut de Chimie, U.S.T.H.B., B.P. 32, El-Alia, Bab-Ezzouar, Algiers, Algeria b Laboratoire de Chimie du Solide du CNRS, Université Bordeaux I, 33405 Talence, France

Received 4 July 1994; accepted 18 November 1994

Abstract

A mixture of CaF_2 and LiF has been used to sinter $BaTiO_3$ at low temperature. As a result, a new solid solution has been obtained after 2 h at 930 °C. Mixing, grinding and heating were all performed in air with various starting compositions $[(1-x)BaTiO_3+xCaF_2+xLiF]$. The variation of the unit cell parameters has been determined and the sintering conditions optimized. Dielectric measurements have been performed on ceramic samples over the temperature and frequency ranges 150–450 K and 10^2-10^4 Hz, respectively. Each sample exhibited a large maximum for ϵ_r at the Curie temperature T_C .

Keywords: Ferroelectric ceramics; Low-temperature sintering; Perovskites

1. Introduction

Ferroelectric ABO₃ perovskites are attractive materials for various applications [1,2] and solid solutions are of particular interest for the development of new ferroelectric materials. A study of BaTiO₃-ABF₃ systems (A = Ba, Na, K; B = Li, Mg) has allowed us to determine the influence of ABF₃ fluoride addition on the crystallographic and dielectric properties of BaTiO₃ [3,4]. Three oxyfluoride solid solutions have been prepared from KNbO₃ using the same ABF₃ additives [5]. Recently, crystallographic and dielectric studies have been performed on ceramics with the compositions Na_{1-x}A_x(Nb_{1-x}Mg_x)O_{3-3x}F_{3x} (A = Na, K) [6]. The purpose of the present work was to sinter and characterize derived BaTiO₃ ferroelectric ceramics at low temperature using a mixture of CaF₂ and LiF.

2. Preparation of samples

BaTiO₃ has been synthesized previously via the reaction:

$$BaCO_3 + TiO_2 \xrightarrow{1100 \, ^{\circ}C} BaTiO_3 + CO_2$$

Various starting compositions were prepared from a mixture of BaTiO₃, CaF₂ and LiF powders, i.e. (1-x)BaTiO₃+xCaF₂+xLiF. All weighing, mixing, grinding and heating was performed in air. The purity of the materials was checked by X-ray powder pattern analysis. The different parameters to be considered with a view to optimizing the sintering conditions are composition (x), temperature (T) and time (θ) .

3. Crystallographic study

Samples obtained by heating the starting mixtures (1-x)BaTiO₃+xCaF₂+xLiF at 930 ± 10 °C for 2 h were examined by X-ray powder diffractometry using monochromatic Cu K α_1 radiation ($\lambda = 1.54051$ Å) with silicon as an internal standard. The unit cell parameters were refined using a least-squares refinement. As a result a new solid solution with a perovskite structure has been identified. This occurs in the $0 \le x \le 0.10$ initial composition range. The tetragonal symmetry of pure BaTiO₃ became cubic when more than 0.04 mol (CaF₂+LiF) was added. The dependence of the lattice parameters on the composition is depicted in Fig. 1. Fig. 2 shows the variation in unit cell volume (V) with composition. The TiO₆ and LiF₆ octahedra in the structure are almost the same size with the increase in cation size in going from Ti4+ to Li+ being com-

^{*} Corresponding author.

Table 1
Composition dependence of shrinkage coefficient and dielectric characteristics (1 kHz) for ceramics sintered at 930 °C for 2 h

Initial composition in mole	$\Delta \phi/\phi$	$T_{\rm C}$ (K)	$\epsilon_{\rm r}'$ (at $T_{\rm C}$)	$10^3 \tan \delta$ (at $T_{\rm C}$)
0.975BaTiO ₃ + 0.025 CaF ₂ + 0.025 LiF	0.080	333	2800	5
0.95BaTiO ₃ + 0.05 CaF ₂ + 0.05 LiF	0.117	288	3200	8
0.925BaTiO ₃ + 0.075 CaF ₂ + 0.075 LiF	0.129	278	2250	8
0.90BaTiO ₃ + 0.10 CaF ₂ + 0.10 LiF	0.131	263	2150	10

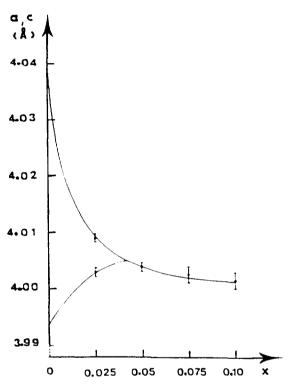


Fig. 1. Dependence of the lattice parameters (at 300 K) on the composition.

pensated by the decrease in the anion size from ${\rm O^{2-}}$ to ${\rm F^-}$ ($r_{{\rm Ci}^4+}=0.605$ Å; $r_{{\rm Li}^+}=0.74$ Å; $r_{{\rm O^{2-}}}=1.40$ Å; $r_{{\rm F^-}}=1.33$ Å in hexacoordination) [7]. The decrease of V with x is due to the decrease in cationic radius in going from ${\rm Ba^{2+}}$ to ${\rm Ca^{2+}}$ ($r_{{\rm Ba^{2+}}}=1.60$ Å; $r_{{\rm Ca^{2+}}}=1.35$ Å in 12 coordination) [7].

4. Dielectric study

Mixtures of BaTiO₃, CaF₂ and LiF were pressed into pellets of 13 mm diameter and ca. 1–2 mm thickness by placing the powder under a pressure of 1 tonne cm⁻² after previous grinding in air. The various parameters used in the sintering process were as follows: (i) heating rate: 200 °C h⁻¹; (ii) sintering temperature: 800 °C, 930 °C, 1000 °C or 1100 °C; and (iii) sintering time: 2 h, 4 h or 8 h.

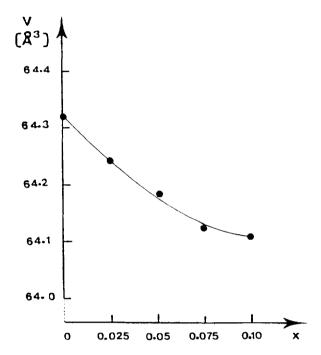


Fig. 2. Dependence of the unit cell volume (at $300~\mathrm{K}$) on the composition.

Table 2 Influence of the sintering temperature on the shrinkage coefficient and the dielectric characteristics (1 kHz) for a ceramic corresponding to x = 0.05 and $\theta = 2$ h

Sintering temperature (°C)	$\Delta\phi/\phi$	$T_{C}\left(K\right)$	$\epsilon'_{\rm r}$ (at $T_{\rm C}$)	$10^3 an \delta$ (at T_C)
800	0.07	368	1200	2
930	0.117	288	3200	8
1000	0.125	293	3500	7
1100	0.125	273	3000	8

The influences of the various parameters are listed in Tables 1, 2 and 3. The temperature dependencies of both the permittivity (ϵ_r') and the dielectric losses (tan δ) were measured on ceramic samples over the temperature and frequency ranges 150–450 K and 10^2-10^4 Hz, respectively. The measurements were carried out under vacuum.

Fig. 3 shows the dependence of $T_{\rm C}$ on composition. In each case, the ferroelectric phase transition was diffuse and the Curie temperature decreased with the

Table 3 Influence of the sintering time on the shrinkage coefficient and the dielectric characteristics (1 kHz) for a ceramic corresponding to x=0.05 sintered at 930 °C

Sintering time (h)	$\Delta\phi/\phi$	<i>T</i> _C (K)	$\epsilon_{\rm r}'$ (at $T_{\rm C}$)	$10^3 an \delta$ (at $T_{ m C}$)
2	0.117	288	3200	8
4	0.117	288	4500	8
8	0.128	263	3200	15

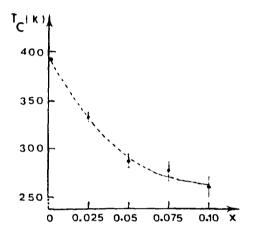


Fig. 3. Variation of T_C with composition (1 kHz).

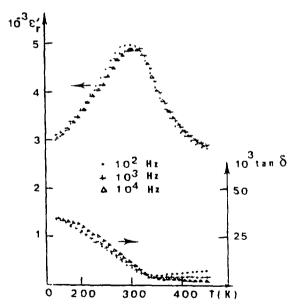


Fig. 4. Temperature dependencies of ϵ'_r and tan δ for a ceramic corresponding to x=0.05 sintered at 1000 °C for 4 h.

amount of fluorine present: $T_{\rm C}$ varied from 393 K (x=0) to 263 K (x=0.10). This result which is due especially to oxygen-fluorine substitution is in good agreement with our previous work on the ferroelectric oxyfluorides [3-6]. Fig. 4 shows, as an example, the temperature dependence of $\epsilon'_{\rm r}$ and $\tan \delta$ for a ceramic corresponding to the initial composition, i.e. (0.95BaTiO₃+0.05CaF₂+0.05LiF), sintered for 4 h at 1000 °C. A strong maximum in $\epsilon'_{\rm r}$ (~5000) was observed at each frequency, with the variation of $\epsilon'_{\rm r}$ with frequency being very weak. This result is in good agreement with a phase transition which occurs without dielectric relaxation in the frequency range investigated (10^2-10^4 Hz) [8,9]. The temperature dependence of $\epsilon'_{\rm r}$ is consistent with the 'Z5U' capacitor norms (Fig. 4).

5. Conclusions

A solid solution derived from BaTiO₃ has been obtained. The shrinkage coefficient and the value of ϵ'_r (at T_C) were greatest when the starting mixture $(0.95 \text{BaTiO}_3 + 0.05 \text{CaF}_2 + 0.05 \text{LiF})$ was sintered for 4 h at $1000 \,^{\circ}\text{C}$ ($\Delta \phi/\phi \approx 0.141$; ϵ'_r (at T_C) ≈ 5000). Dielectric measurements performed at low frequency on the ceramic samples showed a decrease in the ferroelectric Curie temperature T_C with increasing x. The ferroelectric phase transition was very diffuse. The high values of permittivity ϵ'_r associated with the low values of tan δ and the temperature dependence of ϵ'_r give these ceramics a particular interest in the field of multilayer capacitors (Z5U).

References

- M.E. Lines and A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford, 1977
- [2] P. Günter, Ferroelectris, 24 (1980) 35.
- [3] A. Benziada-Taïbi, J. Ravez and P. Hagenmuller, J. Fluorine Chem., 26 (1984) 395.
- [4] A. Benziada, R. Von Der Mühll, J. Ravez and P. Hagenmuller, Rev. Chim. Miner., 23 (1986) 858.
- [5] L. Benziada, Z. Ladjeroud and J. Ravez, Ferroelectrics, 124 (1991) 73.
- [6] Z. Ladjeroud, L. Benziada and J. Ravez, Ferroelectrics, 154 (1994) 207.
- [7] R.D. Shannon, Acta Crystallogr., A32 (1976) 751.
- [8] G.A. Smolenski, Seignetto Electricity and Antiseignetto Electricity, Scientific Edition, Leningrad, 1977.
- [9] L.E. Cross, Ferroelectrics, 76 (1987) 211.